- Цена: $33.50
Мне давно понравились эти преобразователи от Ruideng Technologies, еще с их 1й версии DP20V2A. С тех пор я их уже все попробовал, за исключением понижающе-повышающих DPH и новейшего RD6006. И все оставили у меня приятное впечатление, а так же общение с их производителем. Но вернемся к модулю DPS5005. Итак, этот преобразователь, как видно из его названия, может выдавать напряжение 0-50В с точностью 0.01В и ток 0-5.1А с точностью 0.001А. Такие характеристики довольно хороши, чтобы сделать на его основе лабораторный блок питания, при этом компактный, и что не менее важно – довольно бюджетный (некоторые ссылки содержат цены — это либо за которые я покупал, либо которые были на момент написания обзора).
Итак, начнем с преобразователя DPS5005.
Модуль прибыл в такой пенопластовой коробочке.
Сам преобразователь был запакован в такую пластиковую коробочку
с вспененным полиэтиленом внутри:
Простынь с инструкцией уже не вкладывают, а предлагают скачать по ссылке или QR-коду. Что, в общем-то, разумно.
Таких преобразователей существует 3 варианта: без коммуникации – самый дешевый вариант, с коммуникацией через USB модуль – дороже, и преобразователь с коммуникацией с 2 модулями: USB и Bluetooth – самый дорогой. Имейте ввиду, что если вы возьмёте вариант без коммуникации, то потом, если вдруг захочется коммуникацию — то её уже никак не прикрутишь. А вот если взять промежуточный вариант только с USB модулем, то потом к нему можно будет ещё прикупить Bluetooth модуль. Я сразу выбрал по максимуму – с обоими модулями.
Преобразователь представляет собой сэндвич, спаянный из 3х плат, помещенных в пластиковый корпус. Условно их можно разделить на плату индикации, управления и силовую, но это условно. Этот сэндвич защелкивается в корпусе 4 защелками. Т.к. конструкция плотная и компактная, то отщелкнуть защелки не такая простая задача, и нужно соблюдать осторожность, чтобы не выломать ничего. Но если всё делать аккуратно и внимательно – все получится. Итак, небольшое вскрытие. Вид со стороны радиатора:
Справа коммуникационный порт. Подключать разъём к нему весьма неудобно – нужно использовать пинцет или что-то подобное.
Вид сзади со снятым разъёмом:
Силовой транзистор хоть и представлен довольно мощным MOSFET-ом 2SJ652 (P-канал 60В 28А), но меня удивило, что он уступает по мощности IRF5210 (P-канал 100В 40А) MOSFET-у, который используется в менее мощном 160 ваттном модуле DPS3005. К тому же напряжение в 60В, практически не оставляет запаса, хотя сопротивление канала у 2SJ652 почти в 2 раза меньше, чем у IRF5210 (38мОм против 60мОм), так что, наверное, это имеет смысл. А вот сдвоенный, с общим катодом, высоковольтный Trench MOS ограничительный диод Шоттки VF40100C (100В, 20А/на диод), размещенный рядом на том же радиаторе, уже гораздо мощнее используемого на DPS3005 диода RB085T-60:
Вверху слева есть AO4264E (N-канал 60В 13.5А) MOSFET в корпусе SO-8, который отсутствует в DPS3005:
Так же как и на DPS3005, здесь, рядом с силовым разъёмом на плате управления видна микросхема DC/DC конвертера XL7005A с входным напряжением от 5В до 80В и рабочей частотой 150 кГц.
И аналогично DPS3005, здесь слева виднеется Step-Up конвертер SDB628 (2В-24В, 1.2МГц 2А) (обозначен как B6288G) и операционный усилитель LM321MF (обозначен как A63A), а вот N-канальный MOSFET 2N7002, который есть на DPS3005, здесь отсутствует (я так понимаю, вместо него поставили AO4264E).
И диоды Шоттки SS14 (1A 40В) и SS110 (100В 1А).
Выходной электролит 220 мкФ 50В и рядом предохранитель F1 на 20А
Входная цепь представлена двумя электролитами 330 мкФ 63В:
Индикатор 1.44'':
По сравнению с предыдущей версией — DP50V5A – заметны существенные отличия, что указывает на то, что производитель не стоит на месте, а совершенствует свои модули со временем.
Выбор и доработка первичного БП.
Для изготовления лабораторника в качестве первичного БП раньше использовал 48В этот, но потом подумал, что он избыточен по мощности, цене и габаритам и думал уже делать 48В из пары «народных» БП 24В, соединенных последовательно, но тут китайцы вовремя подсуетились и заделали БП на 48В AC/DC 48В 4A (WX-DC4816 DC48V-4)(был за $11.36). Альтернативные ссылка1(был за $11.66), ссылка2, ссылка3, ссылка4.Мощность, конечно, несколько не дотягивает, но попробуем решить это охлаждением. К сожалению, обзор на этот БП я нигде не нашел. Конечно, очень хотелось бы увидеть обзор на него от многоуважаемого kirich-а, а пока придется как-то «вывозить» самому.
Внешний вид:
По габаритам и элементной базе очень сильно напоминает БП WX-DC2416 36V 180W, который я использовал в своём предыдущем лабораторнике. Сравнение модулей:
Из явных отличий: загрубили входной фильтр, выкинув все Y-конденсаторы и один X-конденсатор и, соответственно, вывод на заземление – видимо такие БП и так никто не заземлял, так что решили это исключить уже на уровне схемотехники. ШИМ-контроллер вынесли на отдельный субмодуль и залили компаундом, по аналогии с WX-DC2440 24V 300W:
субмодуль отдельно:
Народ подозревает, что там ШИМ-контроллер UC3845.
Межобмоточный конденсатор — правильный Y-конденсатор:
Выпрямительные диоды – 2 сдвоенные сборки диодов Шоттки MBR20200CT:
Входной электролит: 100мкФ х 400В, что для заявленных 200W, думаю, маловато. Выходная цепь: 3 электролита 470мкФ х 63В и дроссель:
Тут производитель не стал экономить по мелочам, ставя 50В конденсаторы, как это часто бывает в 48В БП. Индуктивность дросселя мой транзистор-тестер не определил. Пришлось измерять нормальным LC-метром – индуктивность оказалась 2.3 мкГн – неудивительно, что не определил.
В качестве силового MOSFET-а, как и во всех подобных БП, установлен аналог 20N60C3 – версия в изолированном корпусе – FCPF20N60 (N-канал 600В 20А):
Схему данного БП в интернете найти не удалось.
Этот БП я, предварительно немного погонял на разных режимах и посмотрел осциллограммы.
На холостом ходу потребляет всего 1.82W, но коэф. мощности не очень хороший – всего 0.38:
При токе на нагрузку 1.65A, БП потребляет 88.84W, что даёт КПД ~89% и частота пульсаций уже перешла в килогерцы:
При токе на нагрузку 3.31A — потребляет уже 179.2W, что даёт КПД почти 89% и частота пульсаций повысилась:
Ну и при токе на нагрузку 4.09A потребляет уже 216.8W, что даёт примерно тот же КПД, а частота пульсаций, думаю, превысила возможности осциллографа:
Народ пишет, что у них этот БП и 5A выдавал, да и продавцы часто такую картинку демонстрируют:
Но у меня он уходил в защиту при 4.11A. Значит, будем повышать порог срабатывания. Но сначала, чтобы DPS-ка работала на весь диапазон напряжений, надо напряжение этому БП поднять где-то до 55В. Для этого смотрим обвеску регулируемого стабилитрона TL431, используемого в роли источника опорного напряжения:
Схема этой обвязки будет выглядеть так:
Где Vref = 2.495V – это опорное напряжение у TL431. R1= 100k, R2= (27k·6.8k)/(27k+6.8k) = 5.43k – резисторы делителя, а Vo – напряжение, которое требуется получить на БП. Получаем Vo = 19.41·Vref = 48.43V. Если требуется напряжение 55V, то, если не менять R1, нужно взять R2= 4.75k. Я решил менять в схеме только 1 резистор, а т.к. R2 состоит из 2х параллельных резисторов 27k и 6.8k, то я решил заменить 27k на 16k, что даст R2= 4.77k. Тогда итоговое напряжение будет 54.78V, по факту получилось 54.37V. Если будет возможность, то лучше ставить прецизионные SMD резисторы, маркируемыми 4 цифрами. Далее, будем повышать ток. Вся защита здесь организована тремя 2512 резисторами R13-R15 0.47Ом в параллель в стоке транзистора:
Если хочется ставить резисторы так же более-менее одинакового номинала, то ставьте один 0.39Ом и два по 0.36Ом. Но я опять захотел пойти по пути наименьших изменений и оставил один резистор 0.47Ом, а остальные два заменил на 0.33Ом, что по моим расчётам даст ограничение тока ~5.13А. Попутно заменил входной электролит на 220мкФ х 400В ($1.18):
Конденсаторы оказались довольно неплохими, и это был максимальный размер, который я смог уместить, не выходя за габариты платы:
Этой ёмкости, по большому счету, тоже недостаточно, поэтому посмотрел свои старые компьютерные блоки питания, и нашел там как раз конденсатор таких же габаритов, но заявленный на 270 мкФ (по факту бы как раз 250 было):
но во время демонтажа нечаянно оторвал одну ножку, и хотя я её потом припаял и даже вроде ёмкость нормальную показывало, но ставить его уже нельзя.
Ну и раз уж я пошел улучшать, то решил уже поменять и выходные электролиты на бóльшую ёмкость:
Брал здесь (63v680uf 2pcs, $1.50*2).
Ну и традиционно, по рекомендации Кирича, решил добавить керамику на выходные электролиты. Допаял эти 10 мкФ, ($1.37). Если будите тоже менять выходные электролиты, то ножки им сильно не подрезайте, а немного подогните, т.к. у меня потом керамические конденсаторы не дотягивались и пришлось проволочки допаивать.
Ну и т.к. я планировал размещать вентилятор охлаждения в районе ШИМ и оптопары, то конденсатор C6 не давал мне этого сделать. Пришлось его выпаять.
Народ советует увеличить ему ёмкость. Но т.к. большей ёмкости у меня не нашлось, то пришлось удлинить ему ноги, ну и допаять в параллель керамический конденсатор на 10 мкФ, чтобы повысить ёмкость:
Брал здесь (10uf 100pcs, $1.73).
Оптопара тоже мешает, и пришлось её выпаять, максимально отогнуть ноги вперед, чтобы отодвинуть её саму назад, и впаять обратно. Поскольку теперь она располагается уже не над щелью, то щель удлинил пилкой от лобзика. Конденсатор положил. В общем, получилось как-то так:
Дальше, поскольку нагрузочный резистор R23 на 2.2k все рано сильно грелся, то решил заменить его на 4 одноваттных резистора 10k. Спаянных в параллель штабелем:
Ну и опять хотелось сделать выход с этого БП напрямую. Поскольку выход здесь уже не счетверенный, как в предыдущем 36В БП, а двойной, то вариант с пружинным аудиоразъёмом уже не очень подходил. Так же хотелось, чтобы это был более-менее быстросъёмный разъём, чтобы его можно было достаточно просто снять и при этом не оставалось больших зияющих отверстий. Бродя по просторам интернета, я наткнулся на такой разъём ($1.07), который мне показался подходящим:
Контакты можно развернуть, чтобы они встали ближе друг к другу, а внутренние гайки перенести внутрь корпуса, чтобы к ним и прикручивать данный разъём:
Дальше нужно отпилить от него только 2 клеммы и сравнять все выступы сзади.
Клеммы выходного разъёма решил заменить на 10 амперные HT5.08 2pin с шагом 5.08мм ($1 10pcs), которые выводят провода вверх:
Дальше нужно было придумать разъёмное соединение, чтобы можно было вынимать разъём, не раскручивая корпус. Так что вариант прикручивания к штатным болтам отпадал. Проще всего, конечно, было бы сделать параллельные отводы сверху, но, поскольку разъём разделяемый, то это будет не очень практично. Пришлось придумывать вариант с нижним отводом. Я у себя обнаружил такие латунные ламели, не помню уже откуда:
И решил припаять их снизу разъёма. Они достаточно тонкие, чтобы разъём поднять незначительно. Чтобы контакт с разъёмом был лучше, я в большом отверстии сделал небольшой пропил по ширине нижнего вывода разъёма, и немного скруглил края, чтобы уменьшить вероятность кз:
В качестве контактов решил использовать 4.8мм клеммы, которые припаял к ламелям:
И всё это припаял снизу разъёма (здесь показан немного не тот разъём):
Предполагается, что внешняя клемма будет входить в него так:
Ну и обрезаем всё лишнее и впаиваем этот разъём в плату:
Далее, чтобы контакты были прижаты, я натянул на разъём термоусадку, потом подумал и натянул ещё одну (здесь уже вставлен правильный разъём):
Далее – примерка. Предполагается, что дальше разъём будет вставляться примерно так:
Как видно болт плюсовой клеммы будет упираться в дроссель. Вначале думал этот дроссель просто сдвинуть, но потом подумал, раз уж дроссель всё равно выпаивать, то может увеличить ему индуктивность. Да и провод хотелось потолще – дроссель был намотан проводом диаметром 1мм, а на таком феррите индуктивность больше не получить. И тут мне попалась на глаза половинка от какого-то ферритового колечка – решил намотать на нём, тем более изгиб решает проблему с болтом, и ничего переносить не придется. Чтобы не получить межвитковое – обернул феррит каптоновым скотчем в 1 слой. Провод у меня был 1.2 мм, получилось так:
В итоге, после термоусадки получился такой «червячок»:
У нового дросселя индуктивность оказалась 6.14 мкГн, т.е. повысилась почти в 3 раза. Ну и окончательный вариант стал иметь такой вид:
Здесь видно, что нагрузочный резистор R23 пришлось ещё раз поменять, т.к. даже 4 одноваттных резистора тоже сильно грелись, хотя расчеты показывали, что на них должно было выделяться меньше ватта. В итоге после нескольких экспериментов остановился на варианте из 2х 3W резисторов на 1.5k, спаянных последовательно и поднятых максимально высоко. Резисторы брал здесь ($0.88 10pcs).
Термограмма с тепловизора до перепайки резистора (через час работы)
показывала ~125˚C, что, на мой взгляд, несколько многовато. А вот после перепайки нагрузочного резистора температура упала уже до приемлемых 80˚C:
Также на термограмме мне не понравилась ещё одна горячая точка ~117˚C:
Это резистор R16 на 27 Ом, как я понял – снаббер:
Решил заменить на одноваттные резисторы 2512, но т.к. на 27 Ом такого резистора у меня не нашлось, то заменил на 20 Ом ($1.09 50pcs) и 7.5 Ом($1.11 50pcs), спаянные последовательно. Вначале думал спаять их домиком, но они довольно широкие, и были бы довольно близко к радиатору и могли коротнуть. Пришлось паять их вертикально, параллельно радиатору в одну шеренгу и соединить сверху проволочной перемычкой. И ещё мне не понравился термистор на входе, который разогревался до ~110˚C:
Хотя вроде так и должно быть, я всё же решил заменить его на более мощный NTC 5D-15 ($0.99 10pcs) и поднять повыше, чтобы меньше грел находящийся радом электролит. Дальше, подключил к этому БП модуль DPS и посмотрел на разных режимах мощности термограмму. Поскольку охлаждение было пассивным, то съемку производил в экспресс режиме. Ориентировался на мощность, выдаваемую модулем DPS, а так же через ваттметр смотрел мощность потребления из сети. 152.6W выдаёт, потребляет 173.6W (т.е. на БП+DPS рассеивался 21W):
202.5W выдаёт, потребляет 232.6W:
252.5W выдаёт, потребляет 292.7W:
Результатами тестов остался доволен, и дальше нужно всё это размещать уже в корпусе. Корпус опять распечатал на 3D принтере. За основу взял мой корпус из предыдущего обзора – благо габариты остались практически те же, но внутреннее расположение пришлось немного изменить. Например, 12В блок питания для вентилятора из-за сильно увеличившихся размеров входного электролита уже не помещался на прежнем месте и его пришлось перенести в район выходных клемм. А так же пустое гнездо под USB Bluetooth адаптер давно просилось сделать из него полноценное USB с питанием, и в этот раз я решил заморочиться. Чтобы не догружать итак перегруженный первичный БП, навешиванием на него дополнительной DC/DC понижайки, я тоже решил запитать USB гнездо от отдельного AC-DC модуля. Многие такие USB гнезда запитывают параллельно выходным клеммам от DPS, что, безусловно, даёт некоторое удобство регулирования тока и напряжения на гнезде, но зато есть риск спалить подключенное USB устройство, подав туда большое напряжение. Поэтому я решил не рисковать. В качестве AC-DC адаптера, из-за сильно ограниченного внутреннего объёма я выбрал самый маленький (и, соответственно, маломощный), модуль, который нашел:
который я извлёк из этого USB AC адаптера ($0.60). И то его пришлось ещё обрезать, перепаяв выходные диоды и конденсатор, чтобы поместился:
Место я ему нашел только над трансформатором первичного БП. Хотя с одной стороны этот трансформатор будет его греть, но с другой стороны – он будет попадать под прямой поток от вентилятора, что должно этот нагрев нивелировать. Т.к. выходная мощность этого лабораторника уже больше 250W (что почти в 2 раза больше моего предыдущего), то вентилятор ему потребуется уже мощнее. Но габариты корпуса не позволяют размещать в привычном месте вентилятор больше 40мм. В итоге, я обратил внимание на 40мм вентиляторы для видеокарт. У меня их оказалось 3 типа, примерно одинаковые по мощности, но слегка различающиеся лопастями:
Я выбрал средний, брал здесь ($0.63). Рассматривал ещё такой вариант ($1.6 3pcs), примерно такой же по мощности, но остановился на предыдущем.
Корпус с крышкой распечатал на 3D-принтере: около 17 часов и 150г пластика и готово:
В этот раз решил ацетоновую баню не использовать. Ну и начинаем размещать внутри. Вначале вентилятор и гайки для бокового разъёма (который с первичного БП):
Обычно в БП вентиляторы ставят на вытяжку, но, мне показалось, что в такой конфигурации физичнее будет поставить его на нагнетание воздуха. Далее ставим два AC-DC модуля: для USB и 12V, подключенные через провода МГТФ:
12V модуль брал здесь ($0.72). Комбо разъём IEC320 с кнопкой здесь ($0.95), к которому коммутировался с помощью 4.8 мм клемм ($1.44), спаянных и обтянутых термоусадкой. Ну и под такой разъём нужны соответствующие сетевые провода: 60см ($0.9), или 1.2м ($1.04), или 1.5м ($1.18).
USB гнездо решил делать отключаемым. Проще всего, конечно, отключать 5В – обычно так и поступают, но мне не хотелось, чтобы 5В модуль был постоянно включен, поэтому пошел по сложному пути – отключения 220В. От разъёма IEC320 сделал отвод и в разрыв вставил LP00068955837172 30 шт. G64 7x7x12 мм 6 Pin кнопку с фиксацией. Вообще-то она не предназначена для коммутации 220В, но я рискнул, и пока вроде работает нормально. Ну посмотрим насколько её хватит. Отвод сделал мимо сетевой кнопки, поэтому 5В можно получить, не включая сам лабораторник – достаточно вставить вилку в розетку. Ну и хотелось индикации включения. В качестве индикатора припаял на 5В контакт светодиод последовательно с 1.5k резистором:
Далее разместил 4мм сдвоенный терминал ($0.8) и модули USB и Bluetooth к DPS как и прошлый раз – перпендикулярно друг другу:
В комплекте идет только 1 коммуникационный провод, подразумевая, что одновременно можно подключать только 1 модуль. Обращаю ваше внимание на расцветку этого провода – она совсем не вписывается в привычную логику. Если внимательно посмотреть, то видно, что:
- Ground – красный
- Rx – черный
- Tx – желтый
- Vcc(3.3V) – зеленый
- Ground – зеленый
- Rx – желтый
- Tx – черный
- Vcc(3.3V) – красный
- Ground – черный
- Rx – зеленый
- Tx – желтый
- Vcc(3.3V) – красный
А макетка такая:
Вначале я припаял эту плату к 1й и 16й ножкам микросхемы USB модуля кусками жестких проводов:
Мне показалась эта идея хорошей, но в дальнейшем опыт показал, что не очень – в корпусе на макетку давил DPS и это приводило к отрыву ножек микросхемы. В итоге плату повесил на мягкие гибкие провода. И ещё неплохо было бы видеть индикацию работы. И если на модуль Bluetooth светодиод поставлен, то на USB модуле не поставили ни одного светодиода. Пришлось искать схему подключения CH340G:
Поставил светодиод — D3 последовательно с резистором 1.5к. Раньше я этот светодиод размещал на USB модуле, а потом тянул к нему световод. И если к Bluetooth модулю световод вести близко (и индикацию его работы я опять вывел световодом), то к USB модулю далеко и неудобно. Поэтому в этот раз я светодиод USB модуля решил вынести на проводах к отверстию, а там уже зафиксировать коротким куском световода. Светодиод работает сразу при подключении питания по USB:
Далее размещаем первичный БП:
Ну и, наконец, сам модуль DPS и боковой терминал с первичного БП:
Обратите внимание: в USB модуле пришлось сделать небольшой пропил (обведено красным кружком), чтобы он не срывал SMD-конденсатор C1 с модуля Bluetooth, при таком расположении. Закрываем крышкой – оно же донышко.
Вид сбоку:
Вид сзади:
Работа и тестирование лабораторника.
Как работать через коммуникационные порты уже много было описано ранее у аналогичных DPS (например, lexus---08 сделал подробное описание), да и в моём предыдущем обзоре тоже было. С тех пор мало что изменилось. Так что особо подробно я описывать не буду, но всё же необходимый минимум несколькими штрихами опишу.
Вначале нужно скачать их программу отсюда или отсюда. На данный момент файл DPS5005 file (2017.07.03).zip. Распаковать, запустить и установить.
Возможно, ещё понадобятся драйвера CH341SER. Продавец рекомендует, прежде чем заказывать блок с коммуникацией, вначале скачать и протестировать эту прогу на предмет нормально ли она запустится на вашем компе. Проге требуется операционная система Windows 7 или выше.
При работе через USB-модуль, при подключении через micro-USB кабель к компу, в системе устанавливается виртуальный COM-порт, его и нужно указать в проге и нажать Connect.
Для работы через Bluetooth, действий нужно несколько больше. Во-первых, нужно наличие самого Bluetooth на компе. А поскольку не все компьютеры им оснащены, то я прикупил себе Bluetooth 4.0. USB адаптер ($1.49). LMP version 6 (Link Manager Protocol) показала, что это действительно Bluetooth 4.0:
После включения Bluetooth, при поиске блютуза вы должны обнаружить Bluetooth-устройство, содержащее что-то типа DPS в своем имени.
Потом нужно ввести код для сопряжения устройств.
По умолчанию – это 1234.
После чего в систему устанавливаются 2 виртуальных COM-порта: Исходящий и Входящий. И устройство перейдет в статус Сопряжено. В проге DPS5005 PC Software V1.3 нужно выбрать Исходящий COM-порт, как правило, верхний. Если порт выбран правильно, то в окошке Управление устройствами Bluetooth пойдет прогрессбар:
и устройство перейдет в статус Подключено:
После этого нажать Connect. Светодиод Bluetooth-модуля перестанет моргать, а станет гореть постоянно.
Важно! Т.к., после установления связи преобразователя с компом, клавиатура управления на самом DPS5005 блокируется, то перед закрытием программы, обязательно необходимо нажать кнопку Disconnect, иначе преобразователь останется в заблокированном состоянии, которое нельзя снять без повторного подключения программы либо перезагрузки преобразователя.
К сожалению, поскольку здесь версия софта 1.3, то в отличии от того же DPS8005, эта версия не поддерживает экспорт данных в Excel:
Зато экспорт поддерживает мобильное приложение. Так что теперь несколько слов об управлении через мобильное приложение. Оно поддерживает Bluetooth связь андроид-устройств (требуется Android 5.0 и выше) с такими преобразователями (естественно, только communication version). В файле DPS5005 file (2017.07.03).zip уже содержатся файлы мобильного приложения. Первая версия: DPS_V1.0,0_Android APP .apk, и более свежая версия: DPS(H) Series Android APP _V1.0.3_jiagu_at34-07.18.apk. Конечно, предпочтительнее использовать более свежую версию. Также, скачать её можно отсюда: https://www.mediafire.com/folder/i5iu0dw7rrwpx/DPS_power_supply_APP. Файл DPS(H)Series Android APP _V1.0.3_jiagu_at34-07.18.apk, или сделать поиск DPS(H) на Google play.
Запускаем, оно попросит следующие разрешения:
После его установки:
Появится значок:
При запуске появится картинка:
Далее будет такой интерфейс:
Информация о версии:
Насколько я понял, это приложение подходит и для DPS и для DPH.
При запуске оно попросит включить Bluetooth, если не включен, и не запустится, если отклонить:
Итак, включив наш лабораторник, выбираем Bluetooth-устройство на смартфоне/планшете. Очевидно, что нас интересует RuiDengDPS. Вводим код 1234:
Нам сообщают, что установилась связь с RuiDengDPS, и даже с каким конкретно DPS – с DPS5005. Он же начинает высвечиваться в верхнем левом углу:
Светодиод Bluetooth-модуля перестаёт моргать, и начинает гореть постоянно. И теперь у нас появился сверху график, а кнопка снизу стала красной. Жмём на красную кнопку.
В этом приложении, так же как и в компьютерном, клавиатура будет всегда заблокирована и отключить блокировку нельзя. Подключение и работа в этом приложении, в общем-то, интуитивно понятна. Если захочется больших подробностей, то можете посмотреть мой предыдущий обзор, т.к. работа в приложении практически ничем не отличается, то я здесь подробностей уже дублировать не буду.
Пока тестировал этот лабораторник, душа у меня была неспокойна – всё переживал, что первичный БП, рассчитанный максимум на 200W (китайских ватт!!!), у меня выдаёт больше 250W, а потребляет и того все 300. В общем, решил я снизить этот когнитивный диссонанс, подобрав, похожий БП, но помощнее. Ближайший, по похожести оказался WX-DC2425, как раз на 250W. Но модели представлены только на 24В и на 36В. На 48В, к сожалению, найти не удалось. Ну что ж, пришлось брать ближайший на 36В ($13.41) и пытаться получить с него 55В. Могу сказать, что переделка прошла успешно, но пока я заказывал, ждал, переделывал, я всё это время гонял свой получившийся лабораторник на максимальной мощности. В общем, больше месяца он у меня проработал на максималках, и перенёс это более чем достойно. Даже температурные измерения не выявили нигде критических показателей. Единственный дискомфорт, который у меня вызвала его эксплуатация — это довольно много шума от вентилятора на частоте ~1кГц. Видимо из-за плотного прилегания, корпус выступает как своеобразный резонатор. Но это, пожалуй, единственный недостаток, больше ни к чему нареканий нет. Так что переделка лабораторника под более мощный первичный БП уже не имела особого смысла, но раз уж я эту работу проделал, то помещу её под спойлер, чтобы не так утомлять. А то и так много инфы свалилось на тех, кто досюда дочитал.
Трансформатор оказался неожиданно низким — всего 21мм, а у WX-DC2416 – высота транса была 33мм:
Электронные компоненты практически такие же, как и у WX-DC2416: диодный мост GBU608 (6.0A 800V):
силовой MOSFET 20N60C3:
Диодные сборки — 2шт. MBR20200CT:
выходные электролиты — такие же 470 мкФ 50В, но 4шт. Нагрузочный резистор более правильный – 2.2k (на WX-DC2416 стоял 1k и дико грелся):
Входной электролит всего 120 мкФ 400В, что для заявленных 250W, думаю, маловато. Флюс практически не отмыт:
На холостую потребляет где-то 1.2W. Нагрузку в 7А держит, и даже 9А кратковременно давал.
Для повышения выдаваемого напряжения нужно модифицировать делитель напряжения для TL431:
или более детально:
Принципиальная схема:
Где Vref = 2.495V – это опорное напряжение у TL431. R1= 20k, R2= 1100+390 = 1.49k – резисторы делителя, а Vo – напряжение, которое требуется получить на БП. Получаем Vo = 14.42·Vref = 35.99V. Если требуется напряжение 55V, то, если не менять R1, нужно взять R2= 950 Ом. Я решил менять в схеме только 1 резистор, а т.к. R2 состоит из 2х последовательно соединённых резисторов 1100 и 390, то я решил заменить 1100 Ом на 560 Ом, что даст как раз R2= 950 Ом. По факту, напряжение получилось 54.9V, правда, возник один нюанс, о котором скажу ниже. Я подумал, что повышение напряжения почти на 20V трансформатор может не потянуть и решил домотать ему пару витков во вторичную обмотку. Выпаял трансформатор и попытался его разобрать. Я понял, что он хорошо проклеен и без разрушения магнитопровода его разобрать не получится. По большому счёту, его в таких случаях варят часов 5-6 в кипятке, и тогда вроде удаётся его разобрать, но тогда пришлось бы перематывать все обмотки, т.к. они придут в негодность. Решил опять поступить по наименьшему изменению. Вторичная обмотка намотана здесь 4 проводами 0.5мм, и я решил поступить так же. Взял 4 провода по 0.5мм длинной 25см, выровнял и расположил их параллельно друг другу на каптоновом скотче. И сверху им же обернул в один слой – получилась узкая 4 проводная жила. Дальше я протиснул её между магнитопроводом и обмоткой трансформатора по направлению намотки вторичной обмотки – получилось сделать 2 витка:
Спаиваю её с верхним выводом вторичной обмотки, предварительно надев термоусадку:
Затягиваю термоусадку, обрезаю лишнее и залуживаю:
Впаиваю трансформатор назад в плату:
Ну т.к. напряжение будет превышать 50V, то выходные электролиты заменил на 470 мкФ 63V ($0.91 6pcs) (заодно и нагрузочный резистор поменял на 2.4k):
Характеристики их оказались довольно неплохие, практически соответствовали заявленным. Измерил на двух транзистор-тестерах:
Ну и входной электролит тоже заменил на 220мкФ х 400В ($1.18).
Т.к. мой осциллограф ограничен 50V на входе, то чтобы посмотреть осциллограмму и не спалить его, я вначале закоротил только резистор 390 Ом делителя напряжения у TL431, т.е. R2 стал равным 1.1k, что дало напряжение ~48V. Осциллограмма на холостом ходу:
Осциллограмма при нагрузке в 1.58А, потребляет при этом 87W (т.е. кпд ~87%):
Осциллограмма при нагрузке в 6.1А, потребляет при этом 336W (т.е. кпд ~87%):
В общем, думаю, шумы приемлемые. И это я ещё керамику на выходные электролиты не вешал.
Ну а теперь анонсированный нюанс: когда я перепаял делитель на напряжение 55V (т.е. R2= 950 Ом), то БП при включении стал уходить в непрерывный перезапуск. Причем перезапуск был даже когда я делал R2= 1k. Начал разбираться – оказалось слишком большое напряжение ШИМ, после всех моих переделок. Пришлось понижать его путем впаивания резистора 9.1 Ом последовательно в разрыв в цепь отвода питания от трансформатора. Более красиво было бы поднять ножку трансформатора и припаять её через резистор, но для этого пришлось бы опять выпаивать весь трансформатор. Так что было решено перерезать дорожку и напаять резистор сверху:
После этого БП начал стабильно запускаться и работать. Но как я уже сказал, переделка данного БП на 55V оказалась невостребованной. Но если у кого-то есть сильный интерес сделать лабораторник из этого БП – пишите.
Опять можно сказать, что получился очень компактный симпатичный и довольно бюджетный лабораторный блок питания, да ещё с возможностью внешнего управления с компьютера, смартфона/планшета. Особенно удобна коммуникация через Bluetooth — не нужно проводов. Редко какой БП может этим похвастаться.
P.S. пытался опубликовать на 3D модель корпуса на thingiverse, но в последнее время он у меня не открывается, да и многие пишут, что у них тоже. Так что предлагайте варианты, где её опубликовать (если есть к ней интерес).